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Abstract 

This study addressed 2 issues of using loglinear models for smoothing univariate test score 

distributions and for enhancing the stability of equipercentile equating functions. One issue was a 

comparative assessment of several statistical strategies that have been proposed for selecting 1 

from several competing model parameterizations. Another issue was an evaluation of the 

influence of the selection strategies on equating function accuracy. These issues were considered 

in a simulation study, where the accuracies of 17 selection strategies for loglinear models and 

their effects on equating function accuracies were assessed across a range of sample sizes, test 

score distributions, and population equating functions. The results differentiate the selection 

strategies in terms of their accuracies in selecting correct model parameterizations and define the 

situations where their use has the most important implications for equating function accuracy. 
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Introduction 

The loglinear modeling used to smooth test score distributions (Holland & Thayer, 1987; 

Kolen, 1991; Livingston, 1993; Skaggs, 2004) is a psychometric procedure that is both flexible 

and complex. There are many possible parameterizations for loglinear models, ranging from 

simple models with few parameters to complex models with many parameters. There are also 

many ways to select models’ parameterizations, including extensive analyses and comparative 

evaluations (e.g., Holland & Thayer, 2000; von Davier, Holland, & Thayer, 2004), and 

programmable selection strategies that are data driven (Agresti, 2002; Bishop, Feinburg, & 

Holland, 1975; Haberman, 1974a) and even sample-size driven. Although research has evaluated 

the use of smoothing in equating, not much is known about how selection strategies for loglinear 

models affect test equating results. The purpose of this study was to compare several selection 

strategies for loglinear models in terms of their accuracies and to evaluate the influence of 

selection strategies on test equating accuracy. 

Univariate Loglinear Smoothing Models 

The loglinear models considered in this study are those used to produce smooth versions 

of the frequency distribution for one test, X, with possible scores x1,…,xJ, or xj, with j = 1,…,J. 

The transposed row vector of observed score frequencies, n = (n1,…,nJ)t, sums to the total sample 

size, N. The loglinear model expresses the log of the expected (not actual) score probabilities in 

terms of a polynomial function of the test scores, 

0log ( )
1

I ipe j i ji
β β= + ∑

=
x , (1) 

where the ix j  are score functions of the possible score values of test X (e.g., 1x j , 
2x j , 

3x j ,…, Ix j ), 

0β  is a normalizing constant that forces the sum of the expected probabilities ( jp ) to equal 1, 

and the iβ  are parameters to be estimated in the model-fitting process. The value of I determines 

the extent of smoothing and, when maximum likelihood estimation is used, the number of 

moments of the actual test score distribution that are preserved in the smoothed distribution. If I 

= 1, then the smoothed distribution preserves only the first moment (the mean) of the observed 

distribution. If I = 4, then the smoothed distribution preserves the first, second, third, and fourth 
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moments (mean, variance, skewness, and kurtosis) of the observed distribution. The value of I 

also determines the extent to which the smoothed frequencies, =j jm Np , approximate the 

observed frequencies, nj. 

Model Selection Strategies 

Selection strategies for selecting loglinear models like Equation 1 with different values of 

I can be categorized into distinct classes. The major classes considered in this paper are strategies 

based on significance tests of overall model fit statistics, on model fit relative to model 

parameterization (i.e., parsimonious fit), and on sample size. 

Significance testing class. Statistical significance tests based on the extent to which a 

model’s smoothed frequencies fit the observed frequencies in the total distribution can be useful 

in comparing and selecting loglinear smoothing models. Several asymptotically equivalent chi-

square goodness-of-fit statistics have been developed, based on the assumption that the 

frequency data being modeled follow either a Poisson or a multinomial distribution (Bishop et 

al., 1975; Fisher, 1922; Haberman, 1974a; Read & Cressie, 1988). Four chi-square statistics are 

considered in the current study, including the likelihood ratio chi-square, 

2 2 log
⎛ ⎞
⎜= ∑ ⎜
⎝ ⎠

n jG n j e mj j

⎟
⎟

, (2) 

the Pearson chi-square,  

2
-

2 =
j

⎛ ⎞
⎜ ⎟
⎝ ⎠∑

n mj j
χP m j

,  (3) 

the Freeman-Tukey chi-square,  

2
2 = + +1 - 4 +1

j

⎛∑⎜
⎝ ⎠

χ n n mFT j j j
⎞
⎟ , (4) 

and the Cressie-Read chi-square,  
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2/3

= 1.8 -1
j

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟∑ ⎜⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

n jCR n j m j
⎟ . (5) 

For a set of nested models that can be arranged in a sequence of simple to complex 

parameterizations (e.g., nine models from Equation 1, where models’ I = 2, 3, 4,….,10), the 

significance testing of models’ chi-square statistics could proceed in two directions. The testing 

could begin with the most complex models and make comparisons with simpler models 

(complex-to-simple strategy) or could begin with the simplest models and make comparisons 

with more complex models (simple-to-complex strategy). 

The general complex-to-simple strategy was described in Haberman (1974b) and applied 

to test score distribution problems by Hanson (1990, 1996; Hanson & Feinstein, 1995). This 

strategy evaluates the improvement in fit of a complex model relative to a model that is one term 

simpler based on a chi-square significance test of the difference in the models’ chi-square 

statistics and degrees of freedom. A nonsignificant chi-square test indicates that the term in the 

complex model and not in simpler model is fitting sampling noise (i.e., there is support for the 

null hypothesis that the simpler model's I is correct). A significant chi-square test indicates that 

the term in the complex model and not in the simpler model is in the population model so that all 

models with parameterizations less than the complex model are simultaneously rejected (i.e., 

there is support for the alternative hypothesis that the complex model's I is correct). While there 

is no theoretical basis for selecting among the remaining model parameterizations, Hanson 

recommended selecting the final model with the smallest of the remaining I’s. 

For choosing among possible I = 2 through 10 with a simple-to-complex strategy, the 

selection process begins by testing the improvement in model fit of the 3-parameter model 

relative to the 2-parameter model, based on the difference in the models’ chi-square statistics and 

degrees of freedom. If the fit of the 3-parameter model is significantly better than that of the 2-

parameter model, the 3-parameter model is selected. Then, the improvement in fit of the 4-

parameter model relative to the three-parameter model is tested. If the fit of the 3-parameter 

model is not significantly better than that of the 2-parameter model, the 2-parameter model is 

selected. Then, the improvement in fit of the 4-parameter model relative to the 2-parameter 

model is tested. The improvements of fit for the 5- through 10-parameter models are similarly 
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considered. If none of the models has significantly better fits than the 2-parameter model, then 

the 2-parameter model is selected. The simple-to-complex strategy considered here uses a Type I 

error level of 1-(1- α)1/(#Models-1) for each significance test. 

A third significance testing strategy considered in this study tests the overall fit of each 

individual model relative to the models’ degrees of freedom. The selected model from this 

individual-models strategy is the simplest model (i.e., the model with the smallest I) that has an 

insignificant chi-square fit statistic. No adjustment is made for the overall Type I error level. 

Parsimony class. The parsimony class of model selection strategies contains statistics that 

evaluate a model’s  with respect to the parameterization needed to achieve that . Four 

parsimony class statistics considered in this study are the Akaike information criterion (AIC; 

Akaike, 1981), 

2G 2G

2 2( +1)AIC = G + I , (6) 

the Bayesian information criterion (BIC; Schwartz, 1978),  

2 log ( )( +1)+BIC = G N Ie , (7) 

the consistent Akaike information criterion (CAIC; Bozdogan, 1987), 

( )1 log ( ) ( +1)+ +2CAIC = G N Ie , (8) 

and a statistic attributed to Goodman (Agresti, 2002), 

2
1

1
=

GGoodman
J - I - 

− . (9) 

The strategy of model selection based on the parsimony class is to select the model from a set of 

competing models with the smallest statistic. 

Sample size selection. Some statistical analysis teams at ETS base their model selections 

on sample size rather than on the fit of the observed and smoothed distributions (e.g., Table 1). 

An advantage of selecting models based on sample size relative to other strategies is increased 
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efficiency for the smoothing and equating work that must be completed under increasingly tight 

time constraints. 

Table 1 

Sample Size Guidelines Commonly Used for Selecting the Parameterization of a Loglinear 

Model for a Score Distribution 

Sample size No. of moments to preserve (I) 
Less than 40 2 
40–199 3 
200–299 4 
300 or more 5 

Studying Selection-Strategy Accuracy 

One issue with the application of loglinear models and selection strategies to test 

equating is that in the situations where loglinear models are relied on to smooth test score 

distributions, sample sizes may be too small for the selection strategies to work (Fienburg, 1979; 

Haberman, 1988; Koehler & Larntz, 1980). Test distribution and equating studies have 

discouraged the use of selection strategies such as complex-to-simple likelihood ratio chi-square 

tests in favor of fixed-model strategies because the chi-square tests have displayed accuracy 

problems in small samples (Hanson, 1990, 1991). Another issue is that the accuracy of selection 

strategies may not be as closely related to equating function accuracy as equating practitioners 

might expect, because selection strategies evaluate model fit in terms of frequency distributions 

rather than in terms of the cumulative frequency distributions that are used by equipercentile 

equating methods. These issues are the basis of this study, in which the accuracies of the 

reviewed selection strategies were compared in terms of the test score distributions and sample 

sizes typically encountered in practice. The selection strategies also were evaluated with respect 

to equating function accuracy. 

Method 

This simulation study evaluated the accuracy of different model selection strategies on 

loglinear model parameterization accuracy and on equating function accuracy. Accuracy 

statistics for the model selection methods were computed based on 200 replications of each of 

the following combinations of distributions and sample sizes. 
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Eight Univariate Population Distributions 

Three observed univariate test score distributions were used to create population 

distributions of interest. The distributions are most clearly distinguished in terms of their 

skewness, though they also differ in their other moments. The most skewed test distribution 

(skew = -.72) was estimated from 13,185 examinees. Another distribution (skew = -.41) was 

estimated from 8,746 examinees. The third distribution (skew = -.22) was estimated from 8,215 

examinees. Loglinear models were selected for each of these distributions and used as the 

population distributions in the study. For the skew = -.72 distribution, a loglinear model 

preserving eight moments was selected. For the skew = -.41 and skew = -.22 distributions, 

loglinear models preserving six moments were selected. A final, simulated, and approximately 

normal distribution (skew = 0) was generated and modeled with a loglinear model that preserved 

two moments. The observed and smoothed probabilities for the four distributions are plotted in 

Figures 1–4, and the summary statistics are given in Table 2. 

Four additional univariate distributions were also used to assess the accuracies of the 

model selection strategies with respect to the complicated score distributions that arise from the 

use of rounded formula scores (i.e., the test scoring practice that corrects for score inflation due 

to guessing by subtracting a proportion of the total number of incorrect answers from the total 

number of correct answers). The selected models of the two tests (XP and YQ) and two external 

anchors (AP and AQ) were those used in the nonequivalent groups with anchor test (NEAT) 

design example of von Davier et al. (2004), but for this study these models are used simply as 

population univariate distributions (i.e., the bivariate aspects of von Davier et al.’s models are 

not considered in this study). The characteristics of the modeled XP, AP, AQ, and YQ score 

distributions are plotted in Figures 5–8 and described in Table 2. In particular, the abnormally 

low frequencies that occur at every fifth score interval (i.e., the “teeth”) and the abnormally high 

frequencies at the zero scores are structures that would not be modeled well by loglinear models 

that preserve only the overall moments in the distribution. 

Simulating Sample Distributions From the Population Distributions 

Datasets of a desired sample size were created based on the population distributions using 

the following procedure. First, cumulative probabilities were calculated from the score 

probabilities of a population distribution. Then, a desired sample size of (0, 1) uniform random  
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Figure 1. Skew = -.72 and eight-parameter loglinear model. 
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Figure 2. Skew = -.41 and six-parameter loglinear model. 
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Figure 3. Skew = -.22 and six-parameter loglinear model. 
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Figure 4. Skew = .00 and two-parameter loglinear model. 

deviates was generated. The score with the largest cumulative probability that was less than the 

uniform deviate was assigned to each uniform deviate. The resulting datasets resembled the 
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population distributions upon which they were based, but with a degree of random noise that 

corresponded to the sample size. 

Table 2 

Eight Univariate Population Distributions 

Skew 
Item -.72 -.41 -.22 .00 XP AP YQ AQ

Score range 0–40 0–40 0–40 0–40 0–78 0–35 0–78 0–35 
Population moments 8 6 6 2 9a

Mean 30.04 28.09 25.18 20.00 39.25 17.05 32.69 14.39 
SD   7.07   7.44   7.03   6.88 17.23   8.33 16.73   8.21 
Skew  -0.72  -0.41  -0.22   0.00  -0.11  -0.01   0.24   0.26 
Kurtosis  -0.17  -0.63  -0.55  -0.19  -0.77  -0.85  -0.69  -0.75 
a Four overall moments, four moments for the teeth distribution, and one lump at score zero.
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Figure 5. XP score distribution from a nine-parameter loglinear model.  

Sample sizes. Three sample sizes were considered: (a) 100, (b) 1,000, and (c) 5,000. 

Parameterization selection for the individual replications. For each individual sample, 

loglinear model parameterizations were selected based on 16 data-based selection strategies: the 

simple-to-complex, complex-to-simple, and individual-models significance testing strategies 

using each of the four overall chi-square statistics (3 x 4 = 12 strategies) and minimization 

strategies for the four parsimony class statistics (= 4 strategies). These selections were made out 
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of nine possible parameterizations (I = 2–10). The individual-models significance testing strategy 

used a Type I error criterion of .05. The simple-to-complex and complex-to-simple significance 

testing strategies used a Type I error criterion of .00639 = 1 - (1 - .05)1/8. The sample size 

guidelines shown in Table 1 were also considered. 
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Figure 6. AP score distribution from a nine-parameter loglinear model.  
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Figure 7. YQ score distribution from a nine-parameter loglinear model.  
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Figure 8. AQ score distribution from a nine-parameter loglinear model.  

Loglinear model estimation issues. To maximize convergence rates for model estimation, 

the loglinear models were fit using orthogonal polynomials of the test scores (degrees = 2–10) 

rather than the powers shown in Equation 1. All of the models for the sample sizes of 1,000 and 

5,000 converged. A number of the models of degrees 9 or 10 did not converge for the sample 

sizes of 100. For these cases, the model selection procedures used the reduced range of 

converged models rather than the original range of 2–10 moments. 

Traditional equipercentile and kernel equating or linking function evaluation. The 

implications of the model selection strategies on X-to-Y equating accuracy were assessed. For 

this assessment, pairs of the eight distributions were used to set up 14 equivalent groups equating 

or linking situations (Table 3). In some of the considered scenarios, the X and Y distributions 

were sampled from the same population distribution so that equating was not truly needed. In 

other scenarios, test X was sampled from a different population distribution than test Y, so that 

equipercentile equating was needed, the extent of which was based on how much the X and Y 

population distributions differed. 

For each of 200 total replications, loglinear models for the two distributions were selected 

based on the model selection strategies. Then, equating was performed for the scores of the X 

distribution to the scores of the Y distribution. Results were evaluated with respect to the 
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Table 3 

The Distributions Used for the 14 Evaluated X-to-Y Equating/Linking Situations 

X distribution Y distribution Equating/linking needed? 
Skew = -.72 Skew = -.72 No 
Skew = -.41 Skew = -.41 No 
Skew = -.22 Skew = -.22 No 
Skew = .00 Skew = .00 No 
XP XP No 
YQ YQ No 
Skew = -.72 Skew = -.41 Some 
Skew = -.41 Skew = -.22 Some 
Skew = -.22 Skew = 0 Some 
Skew = -.72 Skew = -.22 Lots 
Skew = -.41 Skew = 0 Lots 
XP AP Lots 
YQ AQ Lots 
XP YQ Lots 

equating functions computed in the population distributions. The traditional equipercentile 

method based on percentile ranks (Kolen & Brennan, 2004) and the kernel method based on 

cumulative density functions continuized by Gaussian kernel smoothing (as described in von 

Davier et al., 2004) were both evaluated. 

For example, one considered situation from Table 3 involved equating X to Y, where X 

was the skew = -.41 distribution and Y was the skew = 0 distribution. Six hundred sample 

distributions were simulated based on the population skew = -.41 distribution and six hundred 

additional sample distributions were simulated based on the population skew = 0 distribution. 

The 600 sample distributions included 200 sample distributions of 100 observations each, 200 

additional sample distributions of 1,000 observations each, and 200 additional sample 

distributions of 5,000 observations each. Two hundred kernel and traditional equipercentile 

equating functions were computed for 200 pairs of the X and Y sample distributions of a given 

sample size (the X and Y sample distributions were of equal sample size), and these sample 

equating functions were aggregated to assess equating function accuracy. This process was 

repeated for the remaining 13 equating conditions summarized in Table 3. 

Equating function accuracy was assessed in terms of weighted-average absolute 

differences (WAD) and weighted-average variability (WAV). These indices were computed as, 
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Model Selection Accuracy 

The model selection accuracy results were tabulated to comparatively evaluate the 17 

model selection strategies across the eight population distributions and three considered sample 

sizes. These results were organized into 8 X 3 = 24 total tables, from which 9 especially 

representative tables were selected for this section’s discussion. The accuracies of the model 

selection strategies are summarized in Tables 4–12 for the skew = -.41 distribution (Tables 4–6), 

the skew = 0 distribution (Tables 7–9), and the XP distribution (Tables 10–12). Each table 

summarizes the selection strategies’ preferences in terms of the average parameters selected and 

the percentage of models with 2, 3, …., 10 parameters selected for 200 random samples of a 

particular size and drawn from a particular population distribution. For the skew = -.41 and skew 

= 0 distributions, the population parameterizations were included in the range of considered 

models (i.e., I’s of 6 and 2 were in the range of the considered I = 2, 3, …., 10), so that the 

results 

where the μs and the σs denote the average and standard deviation of the 200 equated scores at 

xj, y,Populations je (x )  is the equated score at xj based on the population distributions, and the P() 

terms are the population probabilities at score xj. In preliminary analyses, versions of Equation 

10 based on actual, squared, and absolute values were considered, and the absolute values were 

found to be most informative. Measures of actual equated score differences tended to 

underestimate the extent to which equating functions differed because the curvilinear equating 

functions weaved around each other so that the positive and negative equated score differences 

cancelled out. Measures of average squared differences, such as the squared bias part of mean 

squared error, are similar to the measure of absolute differences in Equation 10 but more directly 

focused on average squared differences (or root mean-squared differences) rather than on the 

average absolute differences (i.e., mean root-squared differences) that were of interest in this 

study. 

∑SampleSize,Selection ey,SampleSize,Selection j y,Populations j Population j
j

WAD = μ (x )-e (x ) P(X =x )

∑SampleSize,Selection ey,SampleSize,Selection j Population j
j

WAV = σ (x )P(X =x )

Results 

13 

, (11) 

, (10) 



Table 4 

Model Selection Accuracy Percentage for the Skew = -.41 Distribution, N = 100, Six Parameters in the Population Model 

Selected no. of parameters (out of 200 replications): % accuracy 
Selection strategy 

Avg. no. parameters 
selected 2 3 4 5 6a 7 8 9 10 

G2           
Complex-to-simple 2.62 83 3 7 1 2 1 3 2 1 
Simple-to-complex 2.31 88 3 6 1 1 0 1 1 1 
Individual-models 2.06 99 0 1 0 1 0 1 0 0 

χP
2           
Complex-to-simple 3.10 72 2 8 3 7 4 3 2 2 
Simple-to-complex 2.57 83 2 8 2 3 1 1 1 1 
Individual-models 2.04 99 0 1 0 0 0 1 0 0 

χFT
2           

Complex-to-simple 2.40 89 1 6 0 1 0 3 1 1 
Simple-to-complex 2.16 94 1 4 0 0 0 1 1 0 
Individual-models 2.03 100 0 0 0 0 0 1 0 0 

CR           
Complex-to-simple 2.68 81 2 8 2 3 2 2 1 1 
Simple-to-complex 2.36 89 2 5 1 1 0 1 2 0 
Individual-models 2.03 100 0 0 0 0 0 1 0 0 

AIC 3.57 47 11 20 5 8 3 4 2 2 
BIC 2.24 86 5 8 1 0 0 0 0 0 
CAIC 2.14 91 4 5 0 0 0 0 0 0 
Goodman 5.16 30 14 6 7 8 8 10 7 12 
Sample size selection 3.00 0 100 0 0 0 0 0 0 0 

14 

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion. 
a Population model. 

 



Table 5 

Model Selection Accuracy for the Skew = -.41 Distribution, N = 1,000, Six Parameters in the Population Model 

Selected no. of parameters (out of 200 replications): % accuracy 
Selection strategy 

Average no. 
parameters selected 2 3 4 5 6a 7 8 9 10 

G2           
Complex-to-simple 4.13 14 7 54 10 12 1 1 2 1 
Simple-to-complex 4.43 7 3 57 14 16 2 1 1 1 
Individual-models 2.97 49 15 31 4 2 0 0 0 1 

χP
2           
Complex-to-simple 4.27 22 3 36 20 14 2 2 2 2 
Simple-to-complex 4.40 17 3 37 22 17 3 1 1 1 
Individual-models 2.82 61 15 15 8 1 1 0 1 1 

χFT
2           

Complex-to-simple 3.96 18 6 56 13 7 1 0 1 1 
Simple-to-complex 4.23 9 4 56 19 12 1 0 0 0 
Individual-models 2.75 59 14 23 3 2 0 0 0 0 

CR           
Complex-to-simple 4.20 20 3 43 17 14 1 1 2 1 
Simple-to-complex 4.40 14 3 42 21 19 1 2 1 0 
Individual-models 2.79 60 14 18 7 2 0 0 0 1 

AIC 5.68 0 1 26 20 36 8 4 4 4 
BIC 3.60 27 8 51 11 5 0 0 0 0 
CAIC 3.24 41 8 42 8 2 0 0 0 0 
Goodman 5.22 11 17 21 16 11 7 4 6 10 
Sample size selection 5.00 0 0 0 100 0 0 0 0 0 
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Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion. 
a Population model. 

 



Table 6 

Model Selection Accuracy for the Skew = -.41 Distribution, N = 5,000, Six Parameters in the Population Model 

Selected no. of parameters (out of 200 replications): % accuracy 
Selection strategy 

Avg. no. parameters 
selected 2 3 4 5 6a 7 8 9 10 

G2           
Complex-to-simple 5.67 0 0 5 33 58 2 2 0 1 
Simple-to-complex 5.69 0 0 3 33 61 3 1 0 1 
Individual-models 5.06 0 0 32 49 15 1 1 0 4 

χP
2           
Complex-to-simple 5.65 0 0 3 42 51 2 2 1 1 
Simple-to-complex 5.68 0 0 2 40 53 3 2 1 1 
Individual-models 5.06 0 0 25 60 11 2 0 0 4 

χFT
2           

Complex-to-simple 5.59 0 0 5 39 53 1 2 0 1 
Simple-to-complex 5.70 0 0 3 36 56 3 1 1 1 
Individual-models 4.88 0 0 37 49 11 1 0 1 2 

CR           
Complex-to-simple 5.63 0 0 3 41 53 2 2 0 1 
Simple-to-complex 5.68 0 0 2 39 54 3 1 1 1 
Individual-models 5.02 0 0 29 56 11 1 0 0 4 

AIC 6.50 0 0 0 4 67 16 8 2 5 
BIC 5.42 0 0 10 40 50 1 0 0 0 
CAIC 5.31 0 0 13 45 42 1 0 0 0 
Goodman 6.66 0 0 5 35 20 11 8 9 15 
Sample size selection 5.00 0 0 0 100 0 0 0 0 0 
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Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion. 
a Population model. 

 



Table 7 

Model Selection Accuracy for the Skew = 0 Distribution, N = 100, Two Parameters in the Population Model 

Selected no. of parameters (out of 200 replications): % accuracy 
Selection strategy 

Avg. no. parameters 
selected 2a 3 4 5 6 7 8 9 10 

G2           
Complex-to-simple 2.40 92 1 1 2 1 1 1 1 2 
Simple-to-complex 2.05 98 1 1 1 0 0 0 0 0 
Individual-models 2.18 98 0 0 1 0 0 0 0 2 

χP
2           
Complex-to-simple 3.16 75 4 3 4 3 1 9 1 3 
Simple-to-complex 2.49 86 4 3 2 2 2 2 1 1 
Individual-models 2.17 95 2 2 0 0 0 0 1 1 

χFT
2           

Complex-to-simple 2.07 99 0 1 1 0 0 0 0 1 
Simple-to-complex 2.01 100 0 1 0 0 0 0 0 0 
Individual-models 2.00 100 0 0 0 0 0 0 0 0 

CR           
Complex-to-simple 2.58 87 2 2 2 1 1 3 1 3 
Simple-to-complex 2.14 96 2 1 1 0 1 0 0 1 
Individual-models 2.11 98 1 0 0 0 1 0 0 1 

AIC 2.94 71 9 5 3 5 2 3 1 2 
BIC 2.06 96 3 1 1 0 0 0 0 0 
CAIC 2.03 98 2 1 0 0 0 0 0 0 
Goodman 5.41 25 14 8 9 5 11 6 10 14 
Sample size selection 3.00 0 100 0 0 0 0 0 0 0 
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Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion. 
a Population model. 

 



Table 8 

Model Selection Accuracy for the Skew = 0 Distribution, N = 1,000, Two Parameters in the Population Model 

Selected no. of parameters (out of 200 replications): % accuracy 
Selection strategy 

Avg. no. parameters 
selected 2a 3 4 5 6 7 8 9 10 

G2           
Complex-to-simple 2.37 93 1 1 0 1 1 1 3 1 
Simple-to-complex 2.09 98 1 1 0 0 0 1 1 0 
Individual-models 2.37 95 1 0 0 0 0 0 0 5 

χP
2           
Complex-to-simple 2.40 92 2 1 0 2 2 1 2 1 
Simple-to-complex 2.12 97 2 0 0 0 0 1 1 1 
Individual-models 2.22 97 1 0 1 0 0 0 0 3 

χFT
2           

Complex-to-simple 2.29 94 1 1 0 1 1 1 2 1 
Simple-to-complex 2.10 97 1 2 0 0 1 1 0 0 
Individual-models 2.40 95 0 0 0 0 0 0 1 5 

CR           
Complex-to-simple 2.25 96 1 0 0 1 1 1 2 1 
Simple-to-complex 2.04 99 1 0 0 0 0 1 0 0 
Individual-models 2.22 97 1 0 1 0 0 0 0 3 

AIC 2.88 69 12 8 4 2 2 1 3 2 
BIC 2.02 99 2 0 0 0 0 0 0 0 
CAIC 2.01 99 1 0 0 0 0 0 0 0 
Goodman 5.61 26 8 13 7 7 6 5 10 19 
Sample size selection 5.00 0 0 0 100 0 0 0 0 0 
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Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion. 
a Population model. 

 



Table 9 

Model Selection Accuracy for the Skew = 0 Distribution, N = 5,000, Two Parameters in the Population Model 

Selected no. of parameters (out of 200 replications): % accuracy 
Selection strategy 

Avg. no. parameters 
selected 2a 3 4 5 6 7 8 9 10 

G2           
Complex-to-simple 2.37 92 1 1 2 1 1 2 1 1 
Simple-to-complex 2.08 98 1 0 0 0 0 1 0 1 
Individual-models 2.23 97 0 0 1 0 0 0 1 2 

χP
2           
Complex-to-simple 2.34 94 1 0 2 1 1 2 1 1 
Simple-to-complex 2.07 98 1 1 1 0 0 0 0 1 
Individual-models 2.16 97 1 1 1 0 0 0 1 1 

χFT
2           

Complex-to-simple 2.36 92 2 0 2 1 1 2 1 1 
Simple-to-complex 2.09 98 2 0 0 0 0 1 0 1 
Individual-models 2.21 97 0 0 1 0 0 0 1 2 

CR           
Complex-to-simple 2.36 93 1 0 2 1 1 2 1 1 
Simple-to-complex 2.08 98 1 1 1 0 0 0 0 1 
Individual-models 2.16 97 1 0 1 0 1 0 1 1 

AIC 2.88 69 12 6 5 3 2 3 1 1 
BIC 2.01 100 1 0 0 0 0 0 0 0 
CAIC 2.01 100 1 0 0 0 0 0 0 0 
Goodman 5.87 19 11 9 9 10 9 6 11 18 
Sample size selection 5.00 0 0 0 100 0 0 0 0 0 
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Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion. 
a Population model. 

 



Table 10 

Model Selection Accuracy for the XP Distribution, N = 100 

Selected no. of parameters (out of 200 replications): % accuracy 
Selection strategy 

Avg. no. parameters 
selected 2 3 4 5 6 7 8 9 10 

G2           
Complex-to-simple 2.55 83 2 8 2 3 2 1 1 1 
Simple-to-complex 2.32 89 2 6 1 3 2 0 0 0 
Individual-models 2.69 88 1 3 0 1 1 1 1 7 

χP
2           
Complex-to-simple 3.43 67 4 6 5 5 3 4 4 4 
Simple-to-complex 2.62 82 5 4 3 2 1 2 1 2 
Individual-models 2.28 93 2 2 0 1 0 0 0 3 

χFT
2           

Complex-to-simple 2.29 92 1 4 1 1 0 1 1 1 
Simple-to-complex 2.08 97 1 1 1 1 0 0 0 0 
Individual-models 2.05 99 0 1 0 0 0 0 0 1 

CR           
Complex-to-simple 2.81 79 4 5 3 4 3 1 1 3 
Simple-to-complex 2.41 86 4 4 2 2 1 2 0 1 
Individual-models 2.18 97 0 1 0 1 1 0 0 2 

AIC 3.69 43 10 21 9 9 3 3 2 2 
BIC 2.22 87 6 7 1 0 0 0 0 0 
CAIC 2.10 94 4 2 1 0 0 0 0 0 
Goodman 5.53 19 14 11 12 8 8 9 8 14 
Sample size selection 3.00 0 100 0 0 0 0 0 0 0 
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Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion. 

 



Table 11 

Model Selection Accuracy for the XP Distribution, N = 1,000 

Selected no. of parameters (out of 200 replications): % accuracy 
Selection strategy 

Avg. no. parameters 
selected 2 3 4 5 6 7 8 9 10 

G2           
Complex-to-simple 4.20 16 8 59 4 3 5 3 2 3 
Simple-to-complex 4.36 9 7 64 6 4 4 5 1 2 
Individual-models 5.01 26 10 30 4 3 3 4 1 21 

χP
2           
Complex-to-simple 4.20 23 16 34 8 5 8 4 2 3 
Simple-to-complex 4.51 16 12 38 11 5 9 7 2 2 
Individual-models 4.30 37 17 16 4 5 4 4 1 13 

χFT
2           

Complex-to-simple 4.14 14 8 64 3 1 5 3 1 3 
Simple-to-complex 4.27 9 7 68 4 4 3 3 1 3 
Individual-models 4.72 30 10 30 5 1 2 3 1 19 

CR           
Complex-to-simple 4.09 24 12 41 6 4 7 4 1 3 
Simple-to-complex 4.44 15 10 46 10 5 7 5 1 3 
Individual-models 4.45 35 15 19 4 4 6 3 1 15 

AIC 5.99 0 2 36 17 7 13 8 10 9 
BIC 3.29 34 9 55 3 1 0 0 0 0 
CAIC 3.10 42 10 46 2 1 0 0 0 0 
Goodman 7.09 4 3 14 13 8 11 10 17 23 
Sample size selection 5.00 0 0 0 100 0 0 0 0 0 

21 

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; CAIC = consistent Akaike information criterion. 

 



Table 12 

Model Selection Accuracy for the XP Distribution, N = 5,000 
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Selected no. of parameters (out of 200 replications): % accuracy 
Selection strategy 

Avg. no. parameters 
selected 2 3 4 5 6 7 8 9 10 

G2           
Complex-to-simple 7.18 0 0 22 7 5 15 16 20 16 
Simple-to-complex 7.81 0 0 11 7 6 13 18 25 22 
Individual-models 9.96 0 0 0 0 0 1 1 1 98 

χP
2           
Complex-to-simple 7.51 0 0 9 10 8 18 20 22 14 
Simple-to-complex 7.85 0 0 6 7 7 16 23 25 17 
Individual-models 9.91 0 0 0 0 1 1 1 2 96 

χFT
2           

Complex-to-simple 7.03 0 0 28 7 4 10 15 19 18 
Simple-to-complex 7.64 0 0 19 6 5 9 14 26 23 
Individual-models 9.95 0 0 0 0 0 1 2 1 97 

CR           
Complex-to-simple 7.36 0 0 13 12 7 17 18 22 14 
Simple-to-complex 7.80 0 0 8 7 6 16 20 27 17 
Individual-models 9.93 0 0 0 0 1 1 2 1 97 

AIC 9.04 0 0 2 2 2 8 12 22 54 
BIC 4.56 0 0 72 17 4 2 3 2 1 
CAIC 4.35 0 0 78 16 2 2 2 1 0 
Goodman 9.26 0 0 1 1 1 7 12 20 60 
Sample size selection 5.00 0 0 0 100 0 0 0 0 0 

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion. 

 



given in Tables 4–9 are indicative of selection strategies’ accuracies. For the XP distribution, the 

population parameterization and sample distributions included score-specific features (i.e., teeth) 

that were not included in the range of considered models (i.e., models with I = 2, 3, …., 10 do 

not directly fit the distributions of the teeth), so that the XP results given in Tables 10–12 are 

indicative of selection strategies’ preferences when considering a series of incorrect models. 

One important result in Tables 4–12 is the influence of sample size on the model 

selection strategies across the population distributions. When the population model contained 

many parameters (e.g., the skew = -.41 population distribution contains 6 parameters, Tables 4–

6), the selection strategies were least accurate for small sample sizes (N = 100, Table 4) and most 

accurate for large sample sizes (N = 5,000, Table 6). The accuracies of the model selection 

strategies for the skew = 0 distribution (two parameters in the population distribution, Tables 7–

9) were relatively high and not strongly influenced by the three sample-size conditions. When 

the population model was not among the considered models, such as for the XP distribution 

(Tables 10–12), then large sample sizes caused all of the selection strategies to select models 

with many parameters (e.g., N = 5,000, Table 12). 

The AIC selection strategy tended to select models with more parameters than most of 

the other selection strategies, resulting in relatively high selection accuracy in selecting models 

for the skew = -.41 population distribution (Tables 4–6) and relatively low selection accuracy for 

selecting models for the skew = 0 population distribution (Tables 7-9). In terms of the other 

parsimony-class selection strategies, the BIC favored models with fewer parameters than the 

AIC, and the CAIC favored models with fewer parameters than the BIC (corresponding with the 

penalties with which these statistics were designed, Equations 6–8). The Goodman selection 

strategy favored models with many parameters and was so inconsistent in its selection that it 

cannot be recommended for general practice. 

The selection strategies based on the likelihood ratio, Pearson, Freeman-Tukey and 

Cressie-Read chi-square statistics favored simple models with two or three parameters for the 

sample sizes of 100 (Tables 4, 7, and 10). The complex-to-simple selection strategies selected 

models with more parameters than the simple-to-complex strategies for sample sizes of 100. The 

differences between these two approaches were small and inconsistent for the sample sizes of 

1,000 and 5,000. The individual-models selection strategy favored the simplest models out of all 

the selection strategies for the skew = -.41 and skew = 0 distributions but selected models with 
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many parameters when samples of 5,000 were drawn from the XP distribution (Table 12). No 

overwhelming winner emerged in terms of accuracy among the four chi-square statistics, though 

model selections based on the Freeman-Tukey statistic were typically the least accurate. 

Equating Function Accuracy 

To assess the impact of the 17 model-selection strategies on equating function accuracy, 

results were assessed across three sample sizes, 14 equating conditions, and two equating 

methods (kernel and traditional equipercentile), for a total of 28 results tables. This section 

summarizes the 28 tables’ results by focusing on 5 representative tables involving the kernel 

equating results, which are very similar to the traditional equipercentile results; 3 of the 6 no-

equating-needed result tables, and 2 of the 5 lots-of-equating needed result tables. The omitted 

results are similar to and within the range of the results that are presented. The presented results 

show three no-equating-needed situations, where the X and Y samples were drawn from the same 

population distribution, including (a) the skew = -.41 distribution (Table 13), (b) the skew = 0 

distribution (Table 14), and (c) the XP distribution (Table 15). Two lots-of-equating needed 

situations are also presented, one where the X samples were drawn from the skew = -.41 

distribution and the Y samples were drawn from the skew = 0 distribution (Table 16), and 

another where the X samples were drawn from the XP distribution and the Y samples were drawn 

from the YQ distribution (Table 17). All of the results tables present the WAD and WAV values 

for the 16 data-based, model-selection strategies; the sample-size selection strategy (Table 1); 

and, for reference, an additional set of WAD and WAV values for evaluating equatings based on 

using the population models for all replications (i.e., always-fit-the-population models). The 

results of the remaining nine equating situations considered in this study (Table 3) were similar 

to the results of the situations summarized in Tables 13–17. 

A general result across Tables 13–17 is the influence of sample size on the sample 

equating functions’ absolute deviations from the population equating function (WAD) and on the 

sample equating functions’ variability (WAV). Large sample sizes reduced WAD values because 

they created situations where the model selection strategies were more accurate (Tables 4–6) or 

highly parameterized (Tables 10–12). In addition, large sample sizes produced more stable 

equating results and smaller WAV values for the equating functions based on all of the selection 

strategies. 



Table 13 

The X-to-Y Kernel Equating Situation, X and Y Sampled From the Skew = -.41 Distribution, No Equating Needed 

NX = NY = 100 NX = NY = 1,000 NX = NY = 5,000 
Selection strategy WAD WAV WAD WAV WAD WAV 
G2       

Complex-to-simple 0.056 1.261 0.010 0.451 0.029 0.202 
Simple-to-complex 0.047 1.254 0.013 0.444 0.028 0.199 
Individual-models 0.045 1.197 0.023 0.478 0.028 0.206 

χP
2       
Complex-to-simple 0.048 1.291 0.012 0.471 0.029 0.200 
Simple-to-complex 0.047 1.259 0.007 0.470 0.029 0.199 
Individual-models 0.045 1.203 0.031 0.469 0.029 0.202 

χFT       
Complex-to-simple 0.050 1.239 0.012 0.458 0.029 0.202 
Simple-to-complex 0.043 1.237 0.012 0.447 0.028 0.200 
Individual-models 0.044 1.193 0.023 0.470 0.028 0.205 

CR       
Complex-to-simple 0.047 1.269 0.008 0.470 0.029 0.200 
Simple-to-complex 0.047 1.251 0.008 0.461 0.029 0.200 
Individual-models 0.044 1.193 0.032 0.472 0.029 0.202 

AIC 0.064 1.360 0.012 0.436 0.029 0.194 
BIC 0.053 1.264 0.017 0.473 0.029 0.203 
CAIC 0.049 1.242 0.016 0.486 0.029 0.206 
Goodman 0.071 1.304 0.024 0.461 0.028 0.201 
Sample size selection 0.048 1.279 0.010 0.412 0.028 0.186 
Always-fit-the-population models 0.060 1.386 0.011 0.425 0.028 0.190 
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Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion, 

WAD = weighted-average absolute differences, WAV = weighted-average variability. 

 



Table 14 

The X-to-Y Kernel Equating Situation, X and Y Sampled From the Skew = 0 Distribution, No Equating Needed 

NX = NY = 100 NX = NY = 1,000 NX = NY = 5,000 
Selection strategy WAD WAV WAD WAV WAD WAV 
G2       

Complex-to-simple 0.016 1.125 0.020 0.372 0.018 0.165 
Simple-to-complex 0.018 1.102 0.018 0.370 0.018 0.163 
Individual-models 0.017 1.081 0.018 0.369 0.018 0.164 

χP
2       
Complex-to-simple 0.033 1.177 0.022 0.374 0.018 0.165 
Simple-to-complex 0.020 1.137 0.019 0.370 0.018 0.164 
Individual-models 0.017 1.088 0.018 0.365 0.019 0.164 

χFT
2       

Complex-to-simple 0.015 1.100 0.019 0.371 0.018 0.165 
Simple-to-complex 0.016 1.077 0.018 0.370 0.018 0.163 
Individual-models 0.016 1.076 0.018 0.366 0.018 0.164 

CR       
Complex-to-simple 0.019 1.141 0.022 0.372 0.018 0.165 
Simple-to-complex 0.019 1.111 0.019 0.368 0.018 0.163 
Individual-models 0.017 1.079 0.019 0.365 0.018 0.164 

AIC 0.037 1.196 0.023 0.396 0.018 0.179 
BIC 0.021 1.113 0.017 0.364 0.018 0.162 
CAIC 0.017 1.098 0.017 0.364 0.018 0.162 
Goodman 0.025 1.198 0.021 0.418 0.018 0.185 
Sample size selection 0.035 1.167 0.021 0.419 0.018 0.187 
Always-fit-the-population models 0.016 1.075 0.018 0.357 0.018 0.161 
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Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion, 

WAD = weighted-average absolute differences, WAV = weighted-average variability. 

 



Table 15 

The X-to-Y Kernel Equating Situation, X and Y Sampled From the XP Distribution, No Equating Needed 

NX = NY = 100 NX = NY = 1,000 NX = NY = 5,000 
Selection strategy WAD WAV WAD WAV WAD WAV 
G2       

Complex-to-simple 0.060 3.024 0.093 1.143 0.053 0.494 
Simple-to-complex 0.082 3.035 0.096 1.107 0.053 0.490 
Individual-models 0.057 2.966 0.097 1.174 0.053 0.481 

χP
2       
Complex-to-simple 0.058 3.100 0.090 1.188 0.052 0.492 
Simple-to-complex 0.060 3.060 0.090 1.153 0.053 0.490 
Individual-models 0.071 2.972 0.087 1.178 0.053 0.482 

χFT
2       

Complex-to-simple 0.063 2.962 0.094 1.138 0.053 0.497 
Simple-to-complex 0.081 2.947 0.092 1.101 0.052 0.491 
Individual-models 0.066 2.903 0.095 1.183 0.054 0.482 

CR       
Complex-to-simple 0.052 3.036 0.090 1.180 0.053 0.494 
Simple-to-complex 0.062 3.033 0.095 1.142 0.053 0.490 
Individual-models 0.071 2.925 0.092 1.185 0.053 0.481 

AIC 0.056 3.211 0.087 1.079 0.053 0.484 
BIC 0.072 3.045 0.093 1.182 0.053 0.493 
CAIC 0.074 3.008 0.087 1.199 0.053 0.494 
Goodman 0.047 3.179 0.087 1.096 0.053 0.483 
Sample size selection 0.058 3.116 0.086 1.042 0.053 0.462 
Always-fit-the-population models 0.064 3.183 0.082 1.023 0.053 0.454 
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Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion, 

WAD = weighted-average absolute differences, WAV = weighted-average variability. 

 



Table 16 

The X-to-Y Kernel Equating Situation, X sampled From the Skew = -.41 Distribution and Y Sampled From the  

Skew = 0 Distribution, Lots of Equating Needed 

NX = NY = 100 NX = NY = 1,000 NX = NY = 5,000 
Selection strategy WAD WAV WAD WAV WAD WAV 
G2       

Complex-to-simple 0.307 1.277 0.102 0.409 0.026 0.193 
Simple-to-complex 0.316 1.265 0.086 0.401 0.021 0.191 
Individual-models 0.333 1.246 0.184 0.410 0.071 0.195 

χP
2       
Complex-to-simple 0.274 1.311 0.091 0.417 0.027 0.191 
Simple-to-complex 0.298 1.281 0.082 0.412 0.026 0.190 
Individual-models 0.333 1.244 0.207 0.406 0.068 0.193 

χFT
2       

Complex-to-simple 0.317 1.258 0.111 0.409 0.028 0.192 
Simple-to-complex 0.328 1.250 0.094 0.403 0.025 0.191 
Individual-models 0.339 1.239 0.210 0.404 0.075 0.194 

CR       
Complex-to-simple 0.292 1.289 0.094 0.413 0.027 0.192 
Simple-to-complex 0.318 1.264 0.079 0.406 0.025 0.191 
Individual-models 0.339 1.241 0.204 0.405 0.071 0.194 

AIC 0.211 1.352 0.044 0.411 0.008 0.194 
BIC 0.311 1.271 0.114 0.407 0.034 0.193 
CAIC 0.328 1.258 0.135 0.415 0.042 0.195 
Goodman 0.219 1.340 0.087 0.428 0.037 0.201 
Sample size selection 0.282 1.304 0.070 0.404 0.063 0.193 
Always-fit-the-population models 0.149 1.339 0.018 0.387 0.006 0.185 
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Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion, 

WAD = weighted-average absolute differences, WAV = weighted-average variability. 
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Table 17 

The X-to-Y Kernel Equating Situation, X Sampled From the XP Distribution and Y Sampled From the YQ Distribution,  

Lots of Equating Needed 

 NX = NY = 100 NX = NY = 1,000 NX = NY = 5,000 
Selection strategy WAD WAV WAD WAV WAD WAV 
G2,       

Complex-to-simple 0.657 2.979 0.101 1.067 0.046 0.487 
Simple-to-complex 0.645 2.983 0.059 1.056 0.044 0.485 
Individual-models 0.665 2.950 0.193 1.101 0.066 0.477 

χP
2       
Complex-to-simple 0.490 3.089 0.150 1.107 0.040 0.487 
Simple-to-complex 0.490 3.049 0.111 1.089 0.046 0.485 
Individual-models 0.693 2.932 0.295 1.105 0.065 0.477 

χFT
2       

Complex-to-simple 0.739 2.921 0.091 1.058 0.050 0.487 
Simple-to-complex 0.746 2.905 0.064 1.053 0.045 0.487 
Individual-models 0.756 2.894 0.221 1.096 0.065 0.476 

CR       
Complex-to-simple 0.595 3.023 0.160 1.108 0.041 0.488 
Simple-to-complex 0.617 2.997 0.101 1.081 0.045 0.484 
Individual-models 0.722 2.908 0.292 1.107 0.065 0.477 

AIC 0.281 3.158 0.035 1.029 0.058 0.480 
BIC 0.579 2.989 0.210 1.114 0.056 0.481 
CAIC 0.658 2.942 0.292 1.124 0.063 0.480 
Goodman 0.273 3.178 0.033 1.049 0.059 0.479 
Sample size selection 0.356 3.075 0.079 0.997 0.068 0.455 
Always-fit-the-population models 0.349 3.428 0.055 0.974 0.050 0.447 

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion, 

WAD = weighted-average absolute differences, WAV = weighted-average variability. 



30 

For the three no-equating-needed situations (Tables 13–15), the WAD values of the 

selection strategies from the criterion identity equating function were so small (< 0.1 raw score 

point) that they might be considered negligible in actual equating practice. Because WAD values 

were so small, no overwhelming winners or losers emerged from the selection strategies in 

Tables 13–15. One interesting finding is that the AIC, which selected models with more 

parameters than many of the other strategies, produced equating functions with slightly larger 

WAD values than other strategies for the sample sizes of 100 and 1,000. Always-fitting-the-

population models did not have large advantages over the selection strategies in terms of 

accuracy in estimating the population identity equating function. 

For the two lots-of-equating needed situations (Tables 16–17), the differences in selection 

strategies’ WAD values were more visible than for the no-equating-needed situations. WAD 

values were above 0.3 and 0.6 raw score points for sample sizes of 100, and they differentiated 

the selection strategies according to strategies’ tendencies to select more and fewer parameters. 

The AIC strategy (which usually selected models with the largest number of parameters) often 

produced the most accurate equating functions, with relatively small WAD values that were 

usually the closest out of all the selection strategies to the WAD values produced from always-

fitting-the-population models. The chi-square-based individual-models selection strategies 

(which usually selected models with relatively few parameters) produced equating functions with 

larger WAD values than those of other selection strategies. The CAIC selection strategy 

produced equating functions with larger WAD values than the BIC and AIC selections, 

corresponding to the CAIC strategy’s preference for models with few parameters. For the sample 

sizes of 100 and 1,000, the sample-size selection strategy selected models with more parameters 

than the chi-square selection strategies, resulting in equating functions with smaller WAD values 

than those from the chi-square strategies and, probably as a result of its consistency, smaller 

WAV values. For sample sizes of 5,000, the chi-square selection strategies selected more than 

the five parameters selected by the sample-size selection strategy, resulting in the chi-square 

strategies that produced equating functions with smaller WAD values than the sample-size 

selection strategy. 

In the X-to-Y equating situation in Table 17, the models considered by the selection 

strategies did not include the X (XP) and Y (YQ) population distributions used to generate the 

sample distributions. With large sample sizes, the selection strategies addressed the complex, 

score-specific features of the population distributions (Figures 5 and 7) by selecting models with 

large numbers of parameters (Tables 11 and 12). The result was that for large sample sizes 
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(1,000 and 5,000) the equating functions computed based on many of the selection strategies did 

not deviate much from the population equating functions in terms of the WAD values (Table 17), 

even though all of the selected models were incorrect. One apparent implication of these results 

is that the impact of score-specific features from rounded formula score distributions on equating 

functions can be adequately addressed in terms of loglinear models that include large numbers of 

distribution-level parameters (i.e., I > 5). The conditions that produce this implication are 

probably too complex to make the implication useful for practice, because interactions between 

sample size and the loglinear models make the performances for the selection strategies 

inconsistent (e.g., the AIC across the sample size conditions) and difficult to explain (e.g., some 

of the simple-to-complex selection strategies select models with relatively few parameters but 

have very good WAD values in Table 17). The approach to modeling rounded formula score 

distributions through the use of indicator functions (i.e., always-fit-the-population models) 

avoids some of the complex results produced by the considered selection strategies’ use of highly 

parameterized but incorrect models. 

Discussion 

The purpose of this study was to compare several common strategies for selecting 

loglinear models in terms of their accuracy in selecting population models and their effect on 

equating function accuracy. The study considered a range of sample sizes, population 

distributions, and population equating functions. The results suggest that selection strategies for 

loglinear models are most accurate with large sample sizes, and that strategies that favor 

complex loglinear models over simpler models (i.e., minimizing the AIC statistic) result in the 

most accurate equating functions across a range of test score distributions. There is always a 

possibility that the selection process for loglinear models in sample data may add bias and 

variability to equating, but the added inaccuracy appears to be most serious when the selected 

models include too few parameters (i.e., fewer than three parameters or moments for most 

situations) rather than too many parameters. 

Implications of Loglinear Model Selection on Equating Function Accuracy 

The results of this study may be somewhat unexpected in terms of how small equating 

inaccuracy was for this study’s models and selection strategies. Whereas the accuracies of many 

selection strategies were not all that high in samples of 1,000 (Table 5), the equating functions 

that used strategies’ selected models in samples of 1,000 were often not problematic in terms of 
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accuracy (Tables 13 and 16). Three issues that influence the association between selection 

strategies and equating function accuracy are (a) the differences in focus of traditional goodness-

of-fit statistics and equated score differences, (b) the complexity of the population distributions 

and equating function being evaluated, and (c) the measures used to evaluate equating function 

accuracy. 

The focus of loglinear model selection strategies is somewhat different from 

equipercentile equating, in which the selection strategies try to minimize the misfit in the score 

frequencies; equipercentile equating is based on continuized, cumulative versions of the score 

probabilities (e.g., percentile ranks or Gaussian kernel cumulative density functions). The extent 

of misfit that can occur in frequencies across the test score range is much greater than the misfit 

that can occur in cumulative probabilities. Frequencies at individual scores can vary somewhat 

independently of other frequencies, whereas cumulative probabilities vary in a much narrower 

range because, unlike frequencies, cumulative probabilities cannot decrease with increasing 

scores and are always forced to a final, maximum value of one. Even when a selection strategy 

selects a loglinear model that does not approximate the population frequency distribution as well 

as other models, the cumulative probabilities based on that model may fit the population 

cumulative probabilities very closely. Thus, the accuracy of the equating function that is based 

on the cumulative probabilities does not necessarily suffer from the inadequate loglinear model. 

Another implication for how loglinear model selection influences equating function 

accuracy is the complexity of the equating function (i.e., the extent of difference in the 

distributions involved in the equating). When the score distributions were sampled from 

populations that did not differ, so that the identity equating function was appropriate, the entire 

complexity of the distributions did not need to be modeled in order to accurately produce the 

identity function. Only when the distributions and equating functions differed in complicated 

ways having to do with their shapes were the more complicated loglinear models needed. For 

situations where distribution differences are small and equipercentile equating is not needed, the 

equating function can be produced accurately from very simple loglinear models. 

Finally, this study evaluated equating accuracy in terms of WAD, one of many possible 

indices with which equating accuracy could have been evaluated. The WAD measure was 

consistent with many of the loglinear model fit statistics in terms of weighting misfit based on 

where most of the population data were. Other accuracy indices could be of interest, especially 

those that give more weight to the misfit of equated scores at specific parts of a score range. 

These other indices are somewhat inconsistent with the focus of the fit of entire distributions that 
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is the basis of many loglinear model fit statistics, and so evaluations of equating accuracy based 

on these alternative indices could produce results that differ from those reported in this study. 

Focusing on accuracy at specific score regions that may not necessarily be where most of the 

data are could be of interest to testing programs that pay great attention to the minimum or 

maximum scale scores, or to passing rates at particular cut scores. 

Implications and Extensions 

All of the selection strategies could be studied more thoroughly to specify the situations 

in which they function best. A broad guideline from the results of this study is that many of the 

selection strategies require sample sizes of at least 1,000 for selecting accurate loglinear models 

of univariate distributions. This guideline could be the focus of some extensions that study the 

strategies across wide ranges of sample sizes; considered models (e.g., I’s from 2-–10 vs. I’s 

from 3–8); and, for the significance tests, Type I error levels. Specific recommendations could be 

developed to define effective use for each of the selection strategies with respect to selection 

accuracy and equating function accuracy. 

This study also could be extended to consider the use of other proposed statistics for 

selecting loglinear models. This study’s results are broad enough to comment on some 

alternative measures. Bozdogan (1987) introduced a consistent AIC with Fisher information 

(CAICF) statistic along with his CAIC statistic. The CAICF is designed to select fewer 

parameters than the CAIC and therefore would produce equating functions that would not be as 

accurate as those from the strategies considered in this study. Gilula and Haberman (1994) 

introduced a modification to the AIC statistic that is theoretically appropriate for selecting 

among incorrect models. Preliminary investigations of Gilula and Haberman’s statistic for this 

study showed that its performance is almost indistinguishable from that of the AIC. Bootstrapped 

versions of the goodness-of-fit statistics considered in this study have been developed and 

studied under sparse data situations that arise with item-level response data (von Davier, 1997), 

and the use of bootstrappng could address accuracy problems when modeling small-sample test 

score distributions. 

A promising, alternative pursuit to additional comparisons of alternative goodness-of-fit 

statistics could be the development of a new class of measures that directly connect loglinear 

model fit to equating function accuracy. The development and evaluation of fit statistics for 

cumulative densities along the lines of the Kolmogorov-Smirnov (Smirnov, 1948) statistic and 

for inverse cumulative densities (i.e., equated scores) would avoid some of the difficulties of 



34 

relating the fit of frequencies to the implications on equated scores. These alternative fit statistics 

would be especially useful for relating loglinear models to more complicated equating methods, 

such as the chained and poststratification or frequency estimation methods. 

An extension to this study’s focus on overall moments could include subset moments and 

indicator functions. The use of subset moments has been described in previous works (Holland & 

Thayer, 2000; von Davier et al., 2004) for modeling aspects of distributions that are known to 

cause systematic structures not attributable to sampling variability. The application of subset 

moments to modeling specific score regions or to abnormally large residuals may enhance 

equating function accuracy in specific situations. The small equating inaccuracy is produced 

from this study’s always-fit-the-population models imply that data-driven applications of subset 

moments could improve model selection above what overall moments are able to accomplish for 

distributions that have complicated structures. In particular, combinations of strategies that first 

select parameters for the overall distribution and then try to improve model fit at specific regions 

or at scores where residuals are very large may be promising. Another potential strategy for 

reducing the influence of large residuals is to use a weighted average of raw frequencies and the 

smoothed frequencies in equating. 

A final extension of this study would be the consideration of selection strategies to 

bivariate problems. Data sparseness in bivariate frequency tables typically makes chi-square 

significance testing based on the fits of one model unfeasible, because chi-square statistics are 

smaller than the degrees of freedom, even for models that do not fit the data well. Bivariate 

situations are likely to differentiate chi-square statistics more than the univariate situations 

considered in this study, as some chi-square statistics are known to respond differently than 

others in conditions of extreme data sparseness (e.g., the likelihood ratio and Pearson chi-square 

statistics in Holland & Thayer, 2000, p. 174). Suggestions for modeling bivariate distributions 

are to work from the outside in (Holland & Thayer), in which case the results of this study 

suggest that using an AIC minimization strategy for univariate distributions is an especially 

effective start to modeling bivariate distributions. 
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